Modeling of PDMS - Silica Nanocomposites

نویسندگان

  • J. S. Smith
  • G. D. Smith
چکیده

A hydrogen bonding pathway between polydimethylsiloxane (PDMS) and hydroxyl groups on a silica surface was studied using quantum chemistry calculations of disiloxane and hexamethyldisiloxane molecules with small silica clusters. A newly developed classical force field for PDMS was developed for atomistic molecular dynamics simulation studies of PDMS – silica nanocomposites to determine the effect of these interactions on the dynamics and structure of PDMS. A three nanometer silica particle ( -crystobalite) with (111) surface hydroxyl group density of 4.8 OH groups/nm was simulated in a PDMS melt in the temperature range of 300 to 500K. The density and structure of PDMS chains near the silica surface were strongly influenced by the hydrogen bonding interaction which is not properly represented in other current force fields. Residence time correlation analysis confirmed that PDMS oxygen – silica surface hydrogen atom dynamics were consistent with polymer hydrogen bonding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Fumed and Mesoporous Silica Nanoparticles on the Properties of Sylgard 184 Polydimethylsiloxane

The effects of silica nanoparticles on the properties of a commonly used Sylgard 184 polydimethylsiloxane (PDMS) in microfluidics were systemically studied. Two kinds of silica nanoparticles, A380 fumed silica nanoparticles and MCM-41 mesoporous silica nanoparticles, were individually doped into PDMS, and the properties of PDMS with these two different silica nanoparticles were separately teste...

متن کامل

Silicone fouling-release coatings: effects of the molecular weight of poly(dimethylsiloxane) and tetraethyl orthosilicate on the magnitude of pseudobarnacle adhesion strength.

A series of poly(dimethyl siloxane) (PDMS)/silica nanocomposites were synthesized utilizing a sol gel method. The samples were evaluated using pseudobarnacle adhesion and tensile strength tests. The effects of the molecular weight of the PDMS and the size and structure of the silica domains on biofouling release and the mechanical behavior of the PDMS/silica materials were investigated. Three d...

متن کامل

Nanooxide/Polymer Composites with Silica@PDMS and Ceria–Zirconia–Silica@PDMS: Textural, Morphological, and Hydrophilic/Hydrophobic Features

SiO2@PDMS and CeO2-ZrO2-SiO2@PDMS nanocomposites were prepared and studied using nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), measurements of advancing and receding contact angles with water, and microcalorimetry. The pore size distributions indicate that the textural characteristics change after oxide modification by poly(...

متن کامل

Investigation of structural, morphological and dynamic mechanical properties of unvulcanized PDMS/silica compound

In this study, the interaction between the silica filler and polydimethylsiloxanes (PDMS) was investigated from the aspects of the bound rubber and morphological characterization. With special attention to the dynamic properties, the dynamic test was conducted by dynamic shear rheometer. The results show that the modified fillers disperse uniformly within PDMS matrix without aggregation and con...

متن کامل

Gamma-Ray Sterilization Effects in Silica Nanoparticles/γ-APTES Nanocomposite-Based pH-Sensitive Polysilicon Wire Sensors

In this paper, we report the γ-ray sterilization effects in pH-sensitive polysilicon wire (PSW) sensors using a mixture of 3-aminopropyltriethoxysilane (γ-APTES) and polydimethylsiloxane (PDMS)-treated hydrophobic fumed silica nanoparticles (NPs) as a sensing membrane. pH analyses showed that the γ-ray irradiation-induced sensitivity degradation of the PSW pH sensor covered with γ-APTES/silica ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004